Impact of Ventilation on Fire Patterns burned remains

FSRI Releases Report - Modeling Gas Burner Fires in Ranch and Colonial Style Structures

June 25, 2020

Executive Summary

The test scenarios ranged from fires in the structures with no exterior ventilation to room fires with flow paths that connected the fires with remote intake and exhaust vents. In the ranch, two replicate fires were conducted for each room of origin and each ventilation condition. Rooms of fire origin included the living room, bedroom, and kitchen. In the colonial, the focus was on varying the flow paths to examine the change in fire behavior and the resulting damage. No replicates were conducted in the colonial. After each fire scene was documented, the interior finish and furnishings were replaced in affected areas of the structure.

Instrumentation was installed to measure gas temperature, gas pressure, and gas movement within the structures. In addition, oxygen sensors were installed to determine when a sufficient level of oxygen was available for flaming combustion. Standard video and firefighting IR cameras were also installed inside of the structures to capture information about the fire dynamics of the experiments. Video cameras were also positioned outside of the structures to monitor the flow of smoke, flames, and air at the exterior vents.

Each of the fires were started from a small flaming source. The fires were allowed to develop until they self-extinguished due to a lack of oxygen or until the fire had transitioned through flashover. The times that fires burned post-flashover varied based on the damage occurring within the structure. The goal was have patterns remaining on the ceiling, walls, and floors post-test. In total, thirteen experiments were conducted in the ranch structure and eight experiments were conducted in the colonial structure. All experiments were conducted at UL's Large Fire Laboratory in Northbrook, IL.

Increasing the ventilation available to the fire, in both the ranch and the colonial, resulted in additional burn time, additional fire growth, and a larger area of fire damage within the structures. These changes are consistent with fire dynamics based assessments and were repeatable. Fire patterns within the room of origin led to the area of origin when the ventilation of the structure was considered. Fire patterns generated pre-flashover, persisted post-flashover if the ventilation points were remote from the area of origin.


Research Project: Impact of Ventilation on Fire Patterns
Report Title: Modeling Gas Burner Fires in Ranch and Colonial Style Structures
Report Authors: Mark McKinnon, Craig Weinschenk and Daniel Madrzykowski
Download the Report: https://dx.doi.org/10.54206/102376/MWJE4818
Release Date: June 25, 2020

Impact of Ventilation on Fire Patterns